

Daily Tutorial Sheet-8 Level - 2

- **96.(B)** I.E. = $I.E._1 + I.E._2$
- **97.(C)** moles(n) = $\frac{110}{10^3 \times 7}$. Energy = moles × 720 kJ/mole = 11.3 kJ mol⁻¹
- **98.(D)** Second ionization energy is amount of energy required to take out an electron from the monopositive cation.

$$M(g) \longrightarrow Mg^{2+} + 2e^{-} \qquad \dots (5)$$

$$M(g) \longrightarrow M^{+} + e^{-} \qquad (3)$$

Hence, (5-3)

99. (BC) W show +3 oxidation state and X show +2 oxidation state.

$$Y = ns^2np^4$$
 Y show -2 oxidation state

$$Z = ns^2np^5$$
, $Z show -1$ oxidation state

The compounds that can be formed are:

(A)
$$W^{+3} + Y^{2-} = W_2 Y_3$$

(B)
$$X^{+2} + Y^{-2} = XY$$

(C)
$$W^{+3} + Z^{-1} = WZ_3$$

(D)
$$X^{+2} + Z^{-1} = XZ_2$$

- **100.(B)** IE \propto Z_{eff} and EGE of Cl > F, so IE of F⁻ < Cl⁻
- **101.(B)** Along the period I.E. increases
- 102.(B) Down the group I.E. decreases
- 103.(B) Ist I.E. Mg > Na more Z_{eff} & fully filled. But after removing one e^- from Na, it achieves Noble gas configuration, so removal of dual electron will be more difficult in comparison to $2^{nd} e^-$ removal from Mg.
- **104.(C)** Along the period I.E. increases But I.E of P > S, due to stability of half filled configuration.
- 105.(A) I.E. $\propto Z_{\text{eff}}$